Constrained hierarchical modeling of degradation data in tissue-engineered scaffold fabrication

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

10 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Pages (from-to)16-33
Journal / PublicationIIE Transactions (Institute of Industrial Engineers)
Volume48
Issue number1
Publication statusPublished - 2 Jan 2016
Externally publishedYes

Abstract

In tissue-engineered scaffold fabrication, the degradation of scaffolds is a critical issue because it needs to match with the rate of new tissue formation in the human body. However, scaffold degradation is a very complicated process, making degradation regulation a challenging task. To provide a scientific understanding on the degradation of scaffolds, we propose a novel constrained hierarchical model (CHM) for the degradation data. The proposed model has two levels, with the first level characterizing scaffold degradation profiles and the second level characterizing the effect of process parameters on the degradation. Moreover, it can incorporate expert knowledge in the modeling through meaningful constraints, leading to insightful inference on scaffold degradation. Bayesian methods are used for parameter estimation and model comparison. In the case study, the proposed method is illustrated and compared with existing methods using data from a novel tissue-engineered scaffold fabrication process. A numerical study is conducted to examine the effect of sample size on model estimation.

Research Area(s)

  • Bayes factor, Bayesian inference, constrained hierarchical model, Gibbs sampling, tissue-engineered scaffolds

Bibliographic Note

Publication details (e.g. title, author(s), publication statuses and dates) are captured on an “AS IS” and “AS AVAILABLE” basis at the time of record harvesting from the data source. Suggestions for further amendments or supplementary information can be sent to lbscholars@cityu.edu.hk.