Concurrent improvement in optical and electrical characteristics by using inverted pyramidal array structures toward efficient Si heterojunction solar cells

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

13 Scopus Citations
View graph of relations

Author(s)

  • Hsin-Ping Wang
  • An-Cheng Li
  • Tzu-Yin Lin
  • Jr-Hau He

Detail(s)

Original languageEnglish
Pages (from-to)1-6
Journal / PublicationNano Energy
Volume23
Online published2 Mar 2016
Publication statusPublished - May 2016
Externally publishedYes

Abstract

The Si heterojunction (SHJ) solar cell is presently the most popular design in the crystalline Si (c-Si) photovoltaics due to the high open-circuit voltages (VOC). Photon management by surface structuring techniques to control the light entering the devices is critical for boosting cell efficiency although it usually comes with the VOC loss caused by severe surface recombination. For the first time, the periodic inverted pyramid (IP) structure fabricated by photolithography and anisotropic etching processes was employed for SHJ solar cells, demonstrating concurrent improvement in optical and electrical characteristics (i.e., short-circuit current density (JSC) and VOC). Periodic IP structures show superior light-harvesting properties as most of the incident rays bounce three times on the walls of the IPs but only twice between conventional random upright pyramids (UPs). The high minority carrier lifetime of the IP structures after a-Si:H passivation results in an enhanced VOC by 28 mV, showing improved carrier collection efficiency due to the superior passivation of the IP structure over the random UP structures. The superior antireflective (AR) ability and passivation results demonstrate that the IP structure has the potential to replace conventional UP structures to further boost the efficiency in solar cell applications.

Research Area(s)

  • Heterojunction, Inverted pyramid, Photon management, Solar cells

Citation Format(s)