Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum
Research output: Journal Publications and Reviews (RGC: 21, 22, 62) › 21_Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Pages (from-to) | 329-363 |
Journal / Publication | Communications in Mathematical Physics |
Volume | 230 |
Issue number | 2 |
Publication status | Published - Oct 2002 |
Link(s)
Abstract
In this paper, we consider the compressible Navier-Stokes equations for isentropic flow of finite total mass when the initial density is either of compact or infinite support. The viscosity coefficient is assumed to be a power function of the density so that the Cauchy problem is well-posed. New global existence results are established when the density function connects to the vacuum states continuously. For this, some new a priori estimates are obtained to take care of the degeneracy of the viscosity coefficient at vacuum. We will also give a non-global existence theorem of regular solutions when the initial data are of compact support in Eulerian coordinates which implies singularity forms at the interface separating the gas and vacuum.
Citation Format(s)
Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum. / Yang, Tong; Zhu, Changjiang.
In: Communications in Mathematical Physics, Vol. 230, No. 2, 10.2002, p. 329-363.Research output: Journal Publications and Reviews (RGC: 21, 22, 62) › 21_Publication in refereed journal › peer-review