TY - JOUR
T1 - Comprehensive first-principles study of stable stacking faults in hcp metals
AU - Yin, Binglun
AU - Wu, Zhaoxuan
AU - Curtin, W. A.
PY - 2017/1/15
Y1 - 2017/1/15
N2 - The plastic deformation in hcp metals is complex, with the associated dislocation core structures and properties not well understood on many slip planes in most hcp metals. A first step in establishing the dislocation properties is to examine the stable stacking fault energy and its structure on relevant slip planes. However, this has been perplexing in the hcp structure due to additional in-plane displacements on both sides of the slip plane. Here, density functional theory guided by crystal symmetry analysis is used to study all relevant stable stacking faults in 6 hcp metals (Mg, Ti, Zr, Re, Zn, Cd). Specially, the stable stacking fault energy, position, and structure on the Basal, Prism I and II, Pyramidal I and II planes are determined using all-periodic supercells with full atomic relaxation. All metals show similar stacking fault position and structure as dictated by crystal symmetry, but the associated stacking fault energy, being governed by the atomic bonding, differs significantly among them. Stacking faults on all the slip planes except the Basal plane show substantial out-of-plane displacements while stacking faults on the Prism II, Pyramidal I and II planes show additional in-plane displacements, all extending to multiple atom layers. The in-plane displacements are not captured in the standard computational approach for stacking faults, and significant differences are shown in the energies of such stacking faults between the standard approach and fully-relaxed case. The existence of well-defined stable stacking fault on the Pyramidal planes suggests zonal dislocations are unlikely. Calculations on the equilibrium partial separation further suggests 〈c + a〉 dissociation into three partials on the Pyramidal I plane is unlikely and 〈c〉 dissociation on Prism planes is unlikely to be stable against climb-dissociation onto the Basal planes in these metals.
AB - The plastic deformation in hcp metals is complex, with the associated dislocation core structures and properties not well understood on many slip planes in most hcp metals. A first step in establishing the dislocation properties is to examine the stable stacking fault energy and its structure on relevant slip planes. However, this has been perplexing in the hcp structure due to additional in-plane displacements on both sides of the slip plane. Here, density functional theory guided by crystal symmetry analysis is used to study all relevant stable stacking faults in 6 hcp metals (Mg, Ti, Zr, Re, Zn, Cd). Specially, the stable stacking fault energy, position, and structure on the Basal, Prism I and II, Pyramidal I and II planes are determined using all-periodic supercells with full atomic relaxation. All metals show similar stacking fault position and structure as dictated by crystal symmetry, but the associated stacking fault energy, being governed by the atomic bonding, differs significantly among them. Stacking faults on all the slip planes except the Basal plane show substantial out-of-plane displacements while stacking faults on the Prism II, Pyramidal I and II planes show additional in-plane displacements, all extending to multiple atom layers. The in-plane displacements are not captured in the standard computational approach for stacking faults, and significant differences are shown in the energies of such stacking faults between the standard approach and fully-relaxed case. The existence of well-defined stable stacking fault on the Pyramidal planes suggests zonal dislocations are unlikely. Calculations on the equilibrium partial separation further suggests 〈c + a〉 dissociation into three partials on the Pyramidal I plane is unlikely and 〈c〉 dissociation on Prism planes is unlikely to be stable against climb-dissociation onto the Basal planes in these metals.
KW - Ab initio calculations
KW - Dislocation dissociation
KW - HCP
KW - Stacking fault
UR - http://www.scopus.com/inward/record.url?scp=84993995293&partnerID=8YFLogxK
UR - https://www.scopus.com/record/pubmetrics.uri?eid=2-s2.0-84993995293&origin=recordpage
U2 - 10.1016/j.actamat.2016.10.042
DO - 10.1016/j.actamat.2016.10.042
M3 - RGC 21 - Publication in refereed journal
SN - 1359-6454
VL - 123
SP - 223
EP - 234
JO - Acta Materialia
JF - Acta Materialia
ER -