Comparing univariate techniques for tender price index forecasting : Box-Jenkins and neural network model

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

18 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Pages (from-to)109-123
Journal / PublicationConstruction Economics and Building
Volume17
Issue number3
Online published21 Sept 2017
Publication statusPublished - Sept 2017

Link(s)

Abstract

The poor performance of projects is a recurring event in the construction sector. Information gleaned from literature shows that uncertainty in project cost is one of the significant causes of this problem. Reliable forecast of construction cost is useful in mitigating the adverse effect of its fluctuation, however the availability of data for the development of multivariate models for construction cost forecasting remains a challenge. The study seeks to investigate the reliability of using univariate models for tender price index forecasting. Box-Jenkins and neural network are the modelling techniques applied in this study. The results show that the neural network model outperforms the Box-Jenkins model, in terms of accuracy. In addition, the neural network model provides a reliable forecast of tender price index over a period of 12 quarters ahead. The limitations of using the univariate models are elaborated. The developed neural network model can be used by stakeholders as a tool for predicting the movements in tender price index. In addition, the univariate models developed in the present study are particularly useful in countries where limited data reduces the possibility of applying multivariate models.

Research Area(s)

  • Box-Jenkins, Forecast, Model, Neural network, Tender price index

Citation Format(s)

Download Statistics

No data available