Comparative transcriptomic analysis reveals reproductive impairments caused by PCBs and OH-PCBs through the dysregulation of ER and AR signaling

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Article number149913
Journal / PublicationScience of the Total Environment
Volume802
Online published27 Aug 2021
Publication statusPublished - 1 Jan 2022

Abstract

Reports have highlighted the presence of PCBs and their metabolites, OH-PCBs, in human serum as well as their endocrine-disrupting effects on reproductive function through direct interactions with the androgen receptor (AR) and estrogen receptor (ER). However, the molecular mechanisms directly linking the actions of PCBs and OH-PCBs on the AR and ER to induce reproductive impairment remain poorly understood. In this study, we characterized the cellular response to PCBs and OH-PCBs acting on AR and ER transactivation at the transcriptome level coupled with bioinformatics analysis to identify the downstream pathways of androgen and estrogen signaling that leads to reproductive dysfunction. We first confirmed the agonistic and antagonistic effects of several PCBs and OH-PCBs on AR- and ER-mediated reporter gene activity using the androgen-responsive LNCaP and estrogen-responsive MCF-7 cell lines, respectively. Anti-estrogenic activity was not detected among the tested compounds; however, we found that in addition to anti-androgenic and estrogenic activity, PCB 28 and PCB 138 exhibited androgenic activity, while most of the tested OH-PCBs showed a synergistic effect on DHT-mediated transactivation of the AR. Bioinformatics analysis of transcriptome profiles from selected PCBs and OH-PCBs revealed various pathways that were dysregulated depending on their agonistic, antagonistic, or synergistic effects. The OH-PCBs with estrogenic activity affected pathways including vitamin metabolism and calcium transport. Other notable dysregulated pathways include cholesterol transport in response to androgenic PCBs, thyroid hormone metabolism in response to anti-androgenic PCBs, and antioxidant pathways in response to androgen-synergistic OH-PCBs. Our results demonstrate that PCBs and OH-PCBs directly alter specific pathways through androgen- or estrogen-mediated signaling, thereby providing additional insights into the mechanisms by which these compounds cause reproductive dysfunction.

Research Area(s)

  • AR, ER, OH-PCBs, Pathway, PCBs, Transcriptome

Citation Format(s)