Coherence Scaling of Noisy Second-Order Scale-Free Consensus Networks
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Pages (from-to) | 5923-5934 |
Journal / Publication | IEEE Transactions on Cybernetics |
Volume | 52 |
Issue number | 7 |
Online published | 19 Feb 2021 |
Publication status | Published - Jul 2022 |
Link(s)
Abstract
A striking discovery in the field of network science is that the majority of real networked systems have some universal structural properties. In general, they are simultaneously sparse, scale-free, small-world, and loopy. In this article, we investigate the second-order consensus of dynamic networks with such universal structures subject to white noise at vertices. We focus on the network coherence HSO characterized in terms of the H₂-norm of the vertex systems, which measures the mean deviation of vertex states from their average value. We first study numerically the coherence of some representative real-world networks. We find that their coherence HSO scales sublinearly with the vertex number N. We then study analytically HSO for a class of iteratively growing networks--pseudofractal scale-free webs (PSFWs), and obtain an exact solution to HSO, which also increases sublinearly in N, with an exponent much smaller than 1. To explain the reasons for this sublinear behavior, we finally study HSO for Sierpinśki gaskets, for which HSO grows superlinearly in N, with a power exponent much larger than 1. Sierpinśki gaskets have the same number of vertices and edges as the PSFWs but do not display the scale-free and small-world properties. We thus conclude that the scale-free, small-world, and loopy topologies are jointly responsible for the observed sublinear scaling of HSO.
Research Area(s)
- Coherence, Distributed average consensus, Eigenvalues and eigenfunctions, Gaussian white noise, Laplace equations, Multi-agent systems, multiagent systems, network coherence, Noise measurement, Resistance, Robustness, scale-free network, small-world network
Citation Format(s)
Coherence Scaling of Noisy Second-Order Scale-Free Consensus Networks. / Xu, Wanyue; Wu, Bin; Zhang, Zuobai et al.
In: IEEE Transactions on Cybernetics, Vol. 52, No. 7, 07.2022, p. 5923-5934.
In: IEEE Transactions on Cybernetics, Vol. 52, No. 7, 07.2022, p. 5923-5934.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review