Coexistence of point, periodic and strange attractors

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

143 Scopus Citations
View graph of relations


Related Research Unit(s)


Original languageEnglish
Article number1350093
Journal / PublicationInternational Journal of Bifurcation and Chaos
Issue number5
Publication statusPublished - May 2013


For a dynamical system described by a set of autonomous ordinary differential equations, an attractor can be a point, a periodic cycle, or even a strange attractor. Recently, a new chaotic system with only one stable equilibrium was described, which locally converges to the stable equilibrium but is globally chaotic. This paper further shows that for certain parameters, besides the point attractor and chaotic attractor, this system also has a coexisting stable limit cycle, demonstrating that this new system is truly complicated and interesting. © 2013 World Scientific Publishing Company.

Research Area(s)

  • periodic solution, Stable equilibrium, strange attractor