Charge Transfer Boosting Moisture Resistance of Seminude Perovskite Nanocrystals via Hierarchical Alumina Modulation

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

7 Scopus Citations
View graph of relations

Author(s)

  • Wenli Zhou
  • Yanling Zhao
  • Ensheng Wang
  • Qingna Li
  • Sunqi Lou
  • Jing Wang
  • Xiaoming Li
  • Qing Lian
  • Qingji Xie
  • Haibo Zeng

Related Research Unit(s)

Detail(s)

Original languageEnglish
Pages (from-to)3159-3165
Journal / PublicationJournal of Physical Chemistry Letters
Volume11
Issue number8
Online published3 Apr 2020
Publication statusPublished - 16 Apr 2020

Abstract

Boosting the stability improvement of cesium lead halide (CsPbX3) perovskite nanocrystals (NCs) remains a serious challenge. In this work, CsPbX3 NCs are effectively anchored on a hierarchical (h-) alumina (Al2O3) substrate to form seminude CsPbX3@h-Al2O3 composites, which can emit strong green light even after being stored in water for 30 days, in sharp contrast to the pure CsPbBr3 NCs. Other oxides, such as TiO2, ZnO, and SiO2, have no boosting effect on the moisture resistance of perovskite NCs. Subsequent density functional theory calculations reveal a significant charge transfer and strong Coulomb attraction between CsPbBr3 and Al2O3. The substantial charge transfer via alumina substrate modulation not only can enhance the internal stability of CsPbBr3 but also can cause CsPbBr3 to be insensitive to water adsorption. These findings are expected to deepen our understanding of improving the stability of CsPbBr3 NCs and shed light on the design of novel perovskite composites for long-term stable optoelectronic devices.

Research Area(s)

  • LEAD HALIDE PEROVSKITES, LIGHT-EMITTING-DIODES, QUANTUM DOTS, TRANSFORMATION, PHASE, OXIDE

Citation Format(s)

Charge Transfer Boosting Moisture Resistance of Seminude Perovskite Nanocrystals via Hierarchical Alumina Modulation. / Zhou, Wenli; Zhao, Yanling; Wang, Ensheng; Li, Qingna; Lou, Sunqi; Wang, Jing; Li, Xiaoming; Lian, Qing; Xie, Qingji; Zhang, Rui-Qin; Zeng, Haibo.

In: Journal of Physical Chemistry Letters, Vol. 11, No. 8, 16.04.2020, p. 3159-3165.

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review