Charge injection engineering at organic/inorganic heterointerfaces for high-efficiency and fast-response perovskite light-emitting diodes

Zhenchao Li, Ziming Chen*, Zhangsheng Shi, Guangruixing Zou, Linghao Chu, Xian-Kai Chen*, Chujun Zhang, Shu Kong So, Hin-Lap Yip*

*Corresponding author for this work

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

74 Citations (Scopus)
52 Downloads (CityUHK Scholars)

Abstract

The development of advanced perovskite emitters has considerably improved the performance of perovskite light-emitting diodes (LEDs). However, the further development of perovskite LEDs requires ideal device electrical properties, which strongly depend on its interfaces. In perovskite LEDs with conventional p-i-n structures, hole injection is generally less efficient than electron injection, causing charge imbalance. Furthermore, the popular hole injection structure of NiOx/poly(9-vinylcarbazole) suffers from several issues, such as weak interfacial adhesion, high interfacial trap density and mismatched energy levels. In this work, we insert a self-assembled monolayer of [2-(9H-carbazol-9-yl)ethyl]phosphonic acid between the NiOx and poly(9-vinylcarbazole) layers to overcome these challenges at the organic/inorganic heterointerfaces by establishing a robust interface, passivating interfacial trap states and aligning the energy levels. We successfully demonstrate blue (emission at 493 nm) and green (emission at 515 nm) devices with external quantum efficiencies of 14.5% and 26.0%, respectively. More importantly, the self-assembled monolayer also gives rise to devices with much faster response speeds by reducing interfacial capacitance and resistance. Our results pave the way for developing more efficient and brighter perovskite LEDs with quick response, widening their potential application scope. © The Author(s) 2023.
Original languageEnglish
Article number6441
JournalNature Communications
Volume14
Online published13 Oct 2023
DOIs
Publication statusPublished - 2023

Publisher's Copyright Statement

  • This full text is made available under CC-BY 4.0. https://creativecommons.org/licenses/by/4.0/

Fingerprint

Dive into the research topics of 'Charge injection engineering at organic/inorganic heterointerfaces for high-efficiency and fast-response perovskite light-emitting diodes'. Together they form a unique fingerprint.

Cite this