Characterization of the intrinsic strength between epoxy and silica using a multiscale approach

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journal

46 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Pages (from-to)1787-1796
Journal / PublicationJournal of Materials Research
Volume27
Issue number14
Publication statusPublished - 28 Jul 2012
Externally publishedYes

Abstract

Organic-inorganic interfaces exist in many natural or synthetic materials, such as mineral-protein interfaces found in bone and epoxy-silica interfaces found in concrete construction. Here, we report a model to predict the intrinsic strength between organic and inorganic materials, based on a molecular dynamics simulation approach combined with the metadynamics method, used to reconstruct the free energy surface between attached and detached states of the bonded system and scaled up to incorporate it into a continuum model. We apply this technique to model an epoxy-silica system that primarily features nonbonded and nondirectional van der Waals and Coulombic chemical interactions. The intrinsic strength between epoxy and silica derived from the molecular level is used to predict the structural behavior of epoxy-silica interface at the macroscopic length scale by invoking a finite element approach using a cohesive zone model which shows a good agreement with existing experimental results. © 2012 Materials Research Society.

Citation Format(s)

Characterization of the intrinsic strength between epoxy and silica using a multiscale approach. / Lau, Denvid; Büyüköztürk, Oral; Buehler, Markus J.

In: Journal of Materials Research, Vol. 27, No. 14, 28.07.2012, p. 1787-1796.

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journal