Characteristic length scales governing plasticity/brittleness of bulk metallic glasses at ambient temperature

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

35 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Article number11905
Journal / PublicationApplied Physics Letters
Volume96
Issue number1
Publication statusPublished - 2010
Externally publishedYes

Abstract

In this letter, we propose a unified theory for the size-dependent plasticity of bulk metallic glasses (BMGs) at room temperature. Based on the principle of energy balance and the shear-banding kinetics, two characteristic length scales are derived. One is a sample-geometry dependent variable related to the elastic energy released to drive shear-band propagation and the other is a material-dependent constant related to the internal resistance to brittle fracture. It is shown that this unified theory is effective in explaining many unusual deformation and fracture behaviors of BMGs. © 2010 American Institute of Physics.