Changes in microbial community during removal of BDE-153 in four types of aquatic sediments

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

19 Scopus Citations
View graph of relations


  • Ying Pan
  • Juan Chen
  • Haichao Zhou
  • Nora F.Y. Tam


Original languageEnglish
Pages (from-to)644-652
Journal / PublicationScience of the Total Environment
Online published18 Sep 2017
Publication statusPublished - 1 Feb 2018


Indigenous microorganisms in sediments could degrade polybrominated diphenyl ethers (PBDEs), but how the microbial communities respond to PBDEs was seldom reported. The effect of BDE-153, a common congener in aquatic environments, on the microbial communities in four types of aquatic sediments was evaluated during the 150 days' incubation under an anaerobic condition. The intrinsic potential to remove BDE-153 varied significantly among four sediment types, and the removal rates of mangrove, mudflat, marine and freshwater sediments were 0.013, 0.013, 0.011, and 0.009 day− 1, respectively. The observed microbial species, Simpson, Shannon, and Chao1 indices in all sediments were rather stable and were not changed significantly by BDE-153 amendment. However, BDE-153 amendment altered the microbial community compositions in three saline sediments at the end of the incubation period. Distance-based multivariate multiple regression analysis revealed that salinity, total organic carbon (TOC) and BDE-52, the major debromination product of BDE-153, were the three main factors explaining the variations in microbial community compositions in BDE-treated sediments; whereas salinity, TOC and pH were the main contributing factors in control sediments without BDE-153. The daughter congeners generated during anaerobic debromination process need more attention, especially their effect on the microbial communities in aquatic sediments.

Research Area(s)

  • Anaerobic removal, Aquatic sediment, Microbial community, PBDEs