Cesàro-volterra path integral formula on a surface

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

6 Scopus Citations
View graph of relations



Original languageEnglish
Pages (from-to)419-441
Number of pages23
Journal / PublicationMathematical Models and Methods in Applied Sciences
Issue number3
Publication statusPublished - Mar 2009


If a symmetric matrix field e = (eij) of order three satisfies the Saint-Venant compatibility relations in a simply-connected open subset Ω of ℝ3, then e is the linearized strain tensor field of a displacement field v of Ω, i.e. e = ∇vT + ∇v in Ω. A classical result, due to Cesàro and Volterra, asserts that, if the field e is smooth, the unknown displacement field v(x) at any point x ∈ Ω can be explicitly written as a path integral inside Ω with endpoint x, and whose integrand is an explicit function of the functions eij and their derivatives. Now let ω be a simply-connected open subset in ℝ2 and let θ : ω → ℝ3 be a smooth immersion. If two symmetric matrix fields (γ αβ) and (ραβ) of order two satisfy appropriate compatibility relations in ω, then (γαβ) and (ραβ) are the linearized change of metric and change of curvature tensor field corresponding to a displacement vector field η of the surface θ(ω). We show here that a "Cesàro-Volterra path integral formula on a surface" likewise holds when the fields (γαβ) and (ραβ) are smooth. This means that the displacement vector η(y) at any point θ(y), y ∈ ω, of the surface θ(ω) can be explicitly computed as a path integral inside ω with endpoint y, and whose integrand is an explicit function of the functions γαβ and ραβ and their covariant derivatives. Such a formula has potential applications to the mathematical analysis and numerical simulation of linear "intrinsic" shell models. © 2009 World Scientific Publishing Company.

Research Area(s)

  • Surfaces in R(3), Saint-Venant compatibility conditions, Cesaro-Volterra path integral formula, intrinsic shell theory, VENANT COMPATIBILITY EQUATIONS, CONTINUUM-MECHANICS, TENSOR-FIELDS, SHELL THEORY