Cell-Free HA-MA/PLGA Scaffolds with Radially Oriented Pores for In Situ Inductive Regeneration of Full Thickness Cartilage Defects

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

30 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Pages (from-to)1632-1642
Journal / PublicationMacromolecular Bioscience
Volume16
Issue number11
Online published26 Jul 2016
Publication statusPublished - Nov 2016
Externally publishedYes

Abstract

A bioactive scaffold with desired microstructure is of great importance to induce infiltration of somatic and stem cells, and thereby to achieve the in situ inductive tissue regeneration. In this study, a scaffold with oriented pores in the radial direction is prepared by using methacrylated hyaluronic acid (HA-MA) via controlled directional cooling of a HA-MA solution, and followed with photo-crosslinking to stabilize the structure. Poly(lactide-co-glycolide) (PLGA) is further infiltrated to enhance the mechanical strength, resulting in a compressive modulus of 120 kPa. In vitro culture of bone marrow stem cells (BMSCs) reveals spontaneous cell aggregation inside this type of scaffold with a spherical morphology. In vivo transplantation of the cell-free scaffold in rabbit knees for 12 w regenerates simultaneously both cartilage and subchondral bone with a Wakitani score of 2.8. Moreover, the expression of inflammatory factor interleukin-1β (IL-1β) is down regulated, although tumor necrosis factor-α (TNF-α) is remarkably up regulated. With the anti-inflammatory, bioactive properties and good restoration of full thickness cartilage defect in vivo, the oriented macroporous HA-MA/PLGA hybrid scaffold has a great potential for the practical application in the in situ cartilage regeneration. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Research Area(s)

  • cartilage regeneration, hyaluronic acid, in situ inductivity, microstructure, scaffolds

Citation Format(s)