Catalyzed Kinetic Growth in Two-Dimensional MoS2

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

6 Scopus Citations
View graph of relations

Detail(s)

Original languageEnglish
Pages (from-to)13130-13135
Journal / PublicationJournal of the American Chemical Society
Volume142
Issue number30
Online published2 Jul 2020
Publication statusPublished - 29 Jul 2020

Abstract

It remains difficult to control the morphology of two-dimensional (2D) materials via direct chemical vapor deposition (CVD) growth. In particular, off-equilibrium (kinetic) growth may produce flakes with non-Wulff shapes (e.g., high-index edges, symmetrical shapes, etc.), which are potentially useful; however, a general controllable approach for the kinetic growth of 2D materials is currently lacking. In this work, we pushed the CVD growth of 2D MoS2 into deep kinetic regime, by using potassium chloride (KCl) as catalyst and plasma pretreatment on growth substrates. The unprecedented nonequilibrium high-index faceting and unusual high-symmetry shapes in 2D materials have been realized. The growth mechanism of high-index facets is rationalized based on the theory of kinetic instability on crystal surfaces. This new vapor-liquid-adatom-solid (VLAS) growth mechanism—synergistic capture of multiple vapor phase molecules by the catalyst particles on corners and the oversaturated adatom diffusion along adjacent edges can offer great opportunities for shape engineering on 2D materials. The high-quality, rapid, and controllable synthesis of high-index facets (edges) and other non-Wulff shapes of 2D transition metal dichalcogenides will benefit the developments in 2D materials.