Broadband and large-area optical chirality generated by an achiral metasurface under achiral excitation

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Article number053504
Journal / PublicationPhysical Review A
Volume108
Issue number5
Online published9 Nov 2023
Publication statusPublished - Nov 2023

Link(s)

Abstract

Optical chirality plays an essential role in chiral light-matter interactions with broad applications in sensing and spectroscopy. Conventional methods of generating optical chirality usually employ chiral structures or chiral excitations. Here, we propose to use an achiral metasurface consisting of a gold disk array excited by a linearly polarized light to generate optical chirality. Using full-wave numerical simulations, we show that the metasurface can give rise to large-area optical chirality of the same sign for a wavelength ranging from 1.2 to 1.5μm. The magnitude of the chirality is comparable to that of circularly polarized plane waves. The emergence of optical chirality can be attributed to the asymmetric polarization singularity lines (C lines) in the near fields of the metasurface. We further explore the application of the proposed metasurface in chiral discriminations by simulating the absorption of chiral helix particles immersed in the near fields, and demonstrate that the left-handed and right-handed helix particles give rise to different absorptions. The phenomenon can be understood using an analytical theory based on the dipole approximation, which predicts differential absorption quantitatively agreeing with the numerical simulation results. Our study uncovers the subtle relationship between near-field optical chirality, polarization singularities, and symmetry. The results can find applications in optical sensing, chiral quantum optics, and optical manipulations of small particles. © 2023 American Physical Society.

Research Area(s)

Download Statistics

No data available