Boiling two-phase flow and efficiency of co- and counter-current microchannel heat exchangers with gas heating

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journal

12 Scopus Citations
View graph of relations



Original languageEnglish
Pages (from-to)6130-6141
Journal / PublicationInternational Journal of Heat and Mass Transfer
Issue number21-22
Online published28 Jun 2012
Publication statusPublished - Oct 2012
Externally publishedYes


To learn how to utilize the exhaust heat from a high-temperature gas product of a methanol reformer, the present study experimentally investigates the boiling two-phase flow in co- and counter-current microchannel heat exchangers (MCHE) with gas heating. Boiling two-phase flow patterns, two-phase flow instability, and efficiency are explored. The working fluid on the hot and cold sides are helium and liquid methanol, respectively. The silicon-based MCHE, which has dimensions of 20 mm × 20 mm, is designed with 18 parallel microchannels on both sides and is prepared using microfabrication processes. Four types of two-phase flow patterns - bubbly-elongated slug flow, annular flow, annular flow with liquid film breakup, and dryout are identified in both types of MCHE that are studied. A flow pattern map is then constructed on the plane of the methanol mass flux versus heat flux for both types of MCHE. In the counter-current MCHE, the efficiency increases significantly with an increase in the mass flux in both the single- and two-phase flow regions, while the effect of mass flux is insignificant in the co-current MCHE. In the two-phase flow region, the efficiency of both types of MCHEs gradually increases with an increase in the hot-side thermal power until the CHF is approached. The highest efficiency obtained in the present study is about 0.85 and 0.90 for the co- and counter-current MCHEs, respectively.

Research Area(s)

  • Efficiency, Microchannel heat exchanger, Two-phase flow

Citation Format(s)