Body-force linear elastic stress intensity factor calculation using fractal two level finite element method

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalNot applicablepeer-review

19 Scopus Citations
View graph of relations

Author(s)

  • A. Y T Leung
  • R. K L Su

Detail(s)

Original languageEnglish
Pages (from-to)879-888
Journal / PublicationEngineering Fracture Mechanics
Volume51
Issue number6
Publication statusPublished - Aug 1995
Externally publishedYes

Abstract

Fractal two level finite element method (F2LFEM) for the analysis of linear fracture problems subjected to body force loading is presented. The main objective here is to show that by employing the F2LFEM a highly accurate and an efficient linear analysis of fracture bodies subjected to internal loading can be obtained as it is hard to find any analytical and exact values of stress intensity factor (SIF) for any kind of geometry subjected to internal loading. Also in this paper, a fast method to transform the body force to the reduced force vector is presented and has been effectively employed. The problems solved here include both the single mode or mixed mode cracks subjected to internal body-force or external loading. In comparison with other numerical algorithms, it seems that with a small amount of computational time and computer storage, highly accurate results can be obtained. © 1995.