Big data approach as an institutional innovation to tackle Hong Kong’s illegal subdivided unit problem

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

9 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Article number2709
Journal / PublicationSustainability
Volume10
Issue number8
Online published1 Aug 2018
Publication statusPublished - Aug 2018

Link(s)

Abstract

While applications of big data have been extensively studied, discussion is mostly made from the perspectives of computer science, Internet services, and informatics. Alternatively, this article takes the big data approach as an institutional innovation and uses the problem of illegal subdivided units (ISUs) in Hong Kong as a case study. High transaction costs incurred in identification of suspected ISUs and associated enforcement actions lead to a proliferation of ISUs in the city. We posit that the deployment of big data analytics can lower these transaction costs, enabling the government to tackle the problem of illegal accommodations. We propose a framework for big data collection, analysis, and feedback. As the findings of a structured questionnaire survey reveal, building professionals believed that the proposed framework could reduce transaction costs of ISU identification. Yet, concerns associated with the big data approach like privacy and predictive policing were also raised by the professionals.

Research Area(s)

  • Big data, Building stock management, Hong Kong, Housing problem, Illegal accommodation, Institutional innovation, Transaction costs

Download Statistics

No data available