Average-case complexity without the black swans

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

11 Scopus Citations
View graph of relations

Author(s)

Related Research Unit(s)

Detail(s)

Original languageEnglish
Pages (from-to)82-101
Journal / PublicationJournal of Complexity
Volume41
Online published29 Dec 2016
Publication statusPublished - Aug 2017

Abstract

We introduce the concept of weak average-case analysis as an attempt to achieve theoretical complexity results that are closer to practical experience than those resulting from traditional approaches. The underlying paradigm is accepted in other areas such as non-asymptotic random matrix theory and compressive sensing, and has a particularly convincing interpretation in the most common situation encountered for condition numbers, where it amounts to replacing a null set of ill-posed inputs by a “numerical null set”. We illustrate the usefulness of these notions by considering three settings: (1) condition numbers that are inversely proportional to a distance of a homogeneous algebraic set of ill-posed inputs; (2) Renegar's condition number for conic optimization; (3) the running time of power iteration for computing a leading eigenvector of a Hermitian matrix.

Research Area(s)

  • Average-case analysis, Computational complexity, Condition numbers, Power iteration, Random matrix theory, Smoothed analysis

Citation Format(s)

Average-case complexity without the black swans. / Amelunxen, Dennis; Lotz, Martin.
In: Journal of Complexity, Vol. 41, 08.2017, p. 82-101.

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review