Automatic spin-chain learning to explore the quantum speed limit

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

50 Scopus Citations
View graph of relations



Original languageEnglish
Article number052333
Journal / PublicationPhysical Review A - Atomic, Molecular, and Optical Physics
Issue number5
Online published30 May 2018
Publication statusPublished - May 2018


One of the ambitious goals of artificial intelligence is to build a machine that outperforms human intelligence, even if limited knowledge and data are provided. Reinforcement learning (RL) provides one such possibility to reach this goal. In this work, we consider a specific task from quantum physics, i.e., quantum state transfer in a one-dimensional spin chain. The mission for the machine is to find transfer schemes with the fastest speeds while maintaining high transfer fidelities. The first scenario we consider is when the Hamiltonian is time independent. We update the coupling strength by minimizing a loss function dependent on both the fidelity and the speed. Compared with a scheme proven to be at the quantum speed limit for the perfect state transfer, the scheme provided by RL is faster while maintaining the infidelity below 5 × 10−4. In the second scenario where a time-dependent external field is introduced, we convert the state transfer process into a Markov decision process that can be understood by the machine. We solve it with the deep Q-learning algorithm. After training, the machine successfully finds transfer schemes with high fidelities and speeds, which are faster than previously known ones. These results show that reinforcement learning can be a powerful tool for quantum control problems.