Automated framework for classification and selection of software design patterns
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Pages (from-to) | 1-20 |
Journal / Publication | Applied Soft Computing Journal |
Volume | 75 |
Online published | 9 Nov 2018 |
Publication status | Published - Feb 2019 |
Link(s)
Abstract
Though, Unified Modeling Language (UML), Ontology, and Text categorization approaches have been used to automate the classification and selection of design pattern(s). However, there are certain issues such as time and effort for formal specification of new patterns, system context-awareness, and lack of knowledge which needs to be addressed. We propose a framework (i.e. Three-phase method) to discuss these issues, which can aid novice developers to organize and select the correct design pattern(s) for a given design problem in a systematic way. Subsequently, we propose an evaluation model to gauge the efficacy of the proposed framework via certain unsupervised learning techniques. We performed three case studies to describe the working procedure of the proposed framework in the context of three widely used design pattern catalogs and 103 design problems. We find the significant results of Fuzzy c-means and Partition Around Medoids (PAM) as compared to other unsupervised learning techniques. The promising results encourage the applicability of the proposed framework in terms of design patterns organization and selection with respect to a given design problem.
Research Area(s)
- Design patterns, Design problems, Feature selection, Supervised learning, Text categorization, Unsupervised learning
Citation Format(s)
Automated framework for classification and selection of software design patterns. / Hussain, Shahid; Keung, Jacky; Sohail, Muhammad Khalid et al.
In: Applied Soft Computing Journal, Vol. 75, 02.2019, p. 1-20.
In: Applied Soft Computing Journal, Vol. 75, 02.2019, p. 1-20.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review