Projects per year
Abstract
Intelligent fault diagnosis has attracted intensive efforts in machine predictive maintenance. However, the structural information from multi-sensor signals has not been fully investigated. In this study, a novel temporal–spatial graph neural network with an attention-aware module (A-TSGNN) is proposed to accomplish multi-source information fusion. First, the graph structure naturally organizes the diverse sensors. The graph convolution model realizes the feature representation in the spatial dimension. Then, time-dependent learning is applied in the temporal dimension, and a temporal–spatial learning framework is built. An additional attention module is designed to learn the flexible weights and model the importance of individual sensors and their correlations. Experiments on a wind turbine dataset achieves an accuracy of 0.9669 and an F1-score of 0.9649. For the gearbox dataset, the values are 0.9927 and 0.9920, respectively. The overall macro-average area under the curve metrics reach a perfect score of 1.00 for both datasets, indicating exceptional performance. The adaptive attention mechanism is also discussed to verify the superiority of the A-TSGNN. Furthermore, comparisons with the single-sensor scheme and other fusion models demonstrate the stable performance of the proposed method. The A-TSGNN provides a potential model for comprehensively utilizing multi-sensor data, showing a promising prospect. © 2023 Elsevier B.V.
Original language | English |
---|---|
Article number | 110891 |
Journal | Knowledge-Based Systems |
Volume | 278 |
Online published | 7 Aug 2023 |
DOIs | |
Publication status | Published - 25 Oct 2023 |
Research Keywords
- Attention mechanism
- Deep learning
- Fault diagnosis
- Graph neural network
- Information fusion
Fingerprint
Dive into the research topics of 'Attention-aware temporal–spatial graph neural network with multi-sensor information fusion for fault diagnosis'. Together they form a unique fingerprint.-
GRF: New Approaches for Reliability Analysis of Industrial Systems Subject to Multivariate Degradation
XIE, M. (Principal Investigator / Project Coordinator) & Gaudoin, O. (Co-Investigator)
1/01/22 → …
Project: Research
-
GRF: Importance Analysis and Maintenance Decisions of Complex Systems with Dependent Components
XIE, M. (Principal Investigator / Project Coordinator) & Parlikad, A. K. (Co-Investigator)
1/11/19 → 23/04/24
Project: Research