TY - JOUR
T1 - Atomically Dispersed Zincophilic Sites in N,P-Codoped Carbon Macroporous Fibers Enable Efficient Zn Metal Anodes
AU - Zeng, Yinxiang
AU - Pei, Zhihao
AU - Luan, Deyan
AU - Lou, Xiong Wen David
PY - 2023/6/7
Y1 - 2023/6/7
N2 - Zn dendrite growth and undesired parasitic reactions severely restrict the practical use of deep-cycling Zn metal anodes (ZMAs). Herein, we demonstrate an elaborate design of atomically dispersed Cu and Zn sites anchored on N,P-codoped carbon macroporous fibers (denoted as Cu/Zn-N/P-CMFs) as a three-dimensional (3D) versatile host for efficient ZMAs in mildly acidic electrolyte. The 3D macroporous framework scan alleviate the structural stress and suppress Zn dendrite growth by spatially homogenizing Zn2+ flux. Moreover, the well-dispersed Cu and Zn atoms anchored by N and P atoms maximize the utilization as abundant active nucleation sites for Zn plating. As expected, the Cu/Zn-N/P-CMFs host presents a low Zn nucleation overpotential, high reversibility, and dendrite-free Zn deposition. The Cu/Zn-N/P-CMFs-Zn electrode exhibits stable Zn plating/stripping with low polarization for 630 h at 2 mA cm-2 and 2 mAh cm-2. When coupled with a MnO2 cathode, the fabricated full cell also shows impressive cycling performance even when tested under harsh conditions. © 2023 American Chemical Society
AB - Zn dendrite growth and undesired parasitic reactions severely restrict the practical use of deep-cycling Zn metal anodes (ZMAs). Herein, we demonstrate an elaborate design of atomically dispersed Cu and Zn sites anchored on N,P-codoped carbon macroporous fibers (denoted as Cu/Zn-N/P-CMFs) as a three-dimensional (3D) versatile host for efficient ZMAs in mildly acidic electrolyte. The 3D macroporous framework scan alleviate the structural stress and suppress Zn dendrite growth by spatially homogenizing Zn2+ flux. Moreover, the well-dispersed Cu and Zn atoms anchored by N and P atoms maximize the utilization as abundant active nucleation sites for Zn plating. As expected, the Cu/Zn-N/P-CMFs host presents a low Zn nucleation overpotential, high reversibility, and dendrite-free Zn deposition. The Cu/Zn-N/P-CMFs-Zn electrode exhibits stable Zn plating/stripping with low polarization for 630 h at 2 mA cm-2 and 2 mAh cm-2. When coupled with a MnO2 cathode, the fabricated full cell also shows impressive cycling performance even when tested under harsh conditions. © 2023 American Chemical Society
UR - http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=LinksAMR&SrcApp=PARTNER_APP&DestLinkType=FullRecord&DestApp=WOS&KeyUT=001005915700001
U2 - 10.1021/jacs.3c03030
DO - 10.1021/jacs.3c03030
M3 - RGC 21 - Publication in refereed journal
SN - 0002-7863
VL - 145
SP - 12333
EP - 12341
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 22
ER -