Atomic scale modeling of vicinal surface growth from melts using the phase-field crystal method

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

2 Scopus Citations
View graph of relations

Author(s)

  • Sai Tang
  • Yaolin Guo
  • Jincheng Wang
  • Yanmei Yu
  • Yaohe Zhou

Detail(s)

Original languageEnglish
Pages (from-to)11-17
Journal / PublicationJournal of Crystal Growth
Volume374
Publication statusPublished - 2013
Externally publishedYes

Abstract

Using the phase-field crystal method, we investigated the bcc {1 1 0} vicinal surface growth from melts at the atomic scale with emphasis on the growth kinetics of two growth modes: step flow growth and island growth on terrace. Simulation results show that, for step flow growth, with the decrease of terrace width, the competition for feeding atoms between neighboring steps causes growth rate vs. step density to deviate from a linear relationship, and finally converge to a finite value. The step crystal direction also strongly influences the growth kinetics: vicinal surface with steps along the closest packed direction - [1 1 1] grows slower than that with [0 0 1] step. For island growth on terrace, the growth exponent of each layer in multi-layer island gradually transits from 1/2 for the top layer to 1/3 for the bottom layer, which demonstrates the transition from global diffusion controlled growth for top layer to surface diffusion controlled growth for bottom layer. The growth mechanism selection map with respect to terrace width and supersaturation is summarized and atom attaching rates of different growth mechanisms are also compared. © 2013 Elsevier B.V.

Research Area(s)

  • A1. Computer simulation A1. Growth models A1. Nanostructures A1. Surfaces

Bibliographic Note

Publication details (e.g. title, author(s), publication statuses and dates) are captured on an “AS IS” and “AS AVAILABLE” basis at the time of record harvesting from the data source. Suggestions for further amendments or supplementary information can be sent to [email protected].