Atomic origins of the plastic deformation micro-mechanisms of γ/γ' FeCoNiAlTi high-entropy alloys

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

7 Scopus Citations
View graph of relations

Author(s)

  • W. W. Xu
  • Z. Y. Xiong
  • Z. N. Li
  • X. Gao
  • W. Li
  • X. Q. Li
  • L. Vitos

Detail(s)

Original languageEnglish
Article number103439
Journal / PublicationInternational Journal of Plasticity
Volume158
Online published15 Sept 2022
Publication statusPublished - Nov 2022

Abstract

The γ/γ' FeCoNiAlTi high-entropy alloys (HEAs) break the strength-ductility trade-off and possess an excellent combination of strength and ductility. However, lack of atomic-level understanding of plastic deformation behaviors restricts the exploration of full capacities of the FeCoNiAlTi HEAs. By computing the generalized stacking fault energies (GSFEs) of the γand γ' phases, the relationships between planar stacking faults and work-hardening capacities, and the effect of chemical concentration and grain orientation on the deformation mechanisms were explored in depth for the FeCoNiAlTi HEAs. Our results demonstrate that the multicomponent nature lowers the GSFEs of the matrix but enhances those of the precipitate to achieve the strength-ductility balance of the HEA. An active factor (ϵ) defined as γisf/γapb (γisf: intrinsic stacking fault energy, γapb: anti-phase boundary energy) was introduced to bridge activation of microbands (MBs) and planar stacking faults in the γ/γ' alloys. Tuning a suitable low ϵ around 0.2 is an efficient strategy for acquiring the extended MBs-induced plasticity. Analyzing the individual/synergetic contribution of the principal elements to the GSFEs-related properties, we find that increasing the amount of Co and Ti promotes the strength-ductility balance and facilitates the MB activation by altering the GSFEs of both γand γ'. Based on our comprehensive analysis, it is concluded that raising the Co/Fe ratio or lowing the Al/Ti ratio benefits the achievement of the desired mechanical properties of the FeCoNiAlTi HEA.

Research Area(s)

  • Deformation mechanism, Density-functional theory, High-entropy alloys, L12γ' precipitate, Stacking faults energy

Citation Format(s)

Atomic origins of the plastic deformation micro-mechanisms of γ/γ' FeCoNiAlTi high-entropy alloys. / Xu, W. W.; Xiong, Z. Y.; Li, Z. N. et al.
In: International Journal of Plasticity, Vol. 158, 103439, 11.2022.

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review