Application of Boltzmann statistical mechanics in the validation of the Gaussian summit-height distribution in rough surfaces
Research output: Journal Publications and Reviews (RGC: 21, 22, 62) › 21_Publication in refereed journal › peer-review
Author(s)
Detail(s)
Original language | English |
---|---|
Pages (from-to) | 846-850 |
Journal / Publication | Journal of Tribology |
Volume | 119 |
Issue number | 4 |
Publication status | Published - Oct 1997 |
Externally published | Yes |
Link(s)
Abstract
In theoretical modeling of contact mechanics, a homogeneously, isotropically rough surface is usually assumed to be a flat plane covered with asperities of a Gaussian summit-height distribution. This assumption yields satisfactory results between theoretical predictions and experimental measurements of the physical characteristics, such as thermal/electrical contact conductance and friction coefficient. However, lack of theoretical basis of this assumption motivates further study in surface modeling. This paper presents a theoretical investigation by statistical mechanics to determine surface roughness in terms of the most probable distribution of surface asperities. Based upon the surface roughness measurements as statistical constraints, the Boltzmann statistical model derives a distribution equivalent to Gaussian. The Boltzmann statistical mechanics derivation in this paper provides a rigorous validation of the Gaussian summit-height assumption presently in use for study of rough surfaces.
Citation Format(s)
Application of Boltzmann statistical mechanics in the validation of the Gaussian summit-height distribution in rough surfaces. / Leung, M.; Hsieh, C. K.; Goswami, D. Y.
In: Journal of Tribology, Vol. 119, No. 4, 10.1997, p. 846-850.Research output: Journal Publications and Reviews (RGC: 21, 22, 62) › 21_Publication in refereed journal › peer-review