Antagonistic Interaction of Mercury and Selenium in a Marine Fish Is Dependent on Their Chemical Species

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

81 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Pages (from-to)3116-3122
Journal / PublicationEnvironmental Science and Technology
Volume45
Issue number7
Online published2 Mar 2011
Publication statusPublished - 1 Apr 2011
Externally publishedYes

Abstract

It is well-known that selenium (Se) shows protective effects against mercury (Hg) bioaccumulation and toxicity, but the underlying effects of Se chemical species, concentration, and administration method are poorly known. In this study, we conducted laboratory studies on a marine fish Terapon jurbua to explain why Hg accumulation is reduced in the presence of Se observed in field studies. When Se and Hg were administrated concurrently in the fish diets, different Se species including selenite, selenate, seleno-DL-cystine (SeCys), and seleno-DL-methionine (SeMet) affected Hg bioaccumulation differently. At high concentration in fish diet (20 μg g-1 normally), selenate and SeCys significantly reduced the dietary Hg(II) assimilation efficiency (AE) from 38% to 26%. After the fish were pre-exposed to dietary selenite or SeMet (7 μg g-1 normally) for 22 days with significantly elevated Se body concentrations, the Hg(II) AEs were pronouncedly reduced (from 41% to 15-26%), whereas the dissolved uptake rate constant and elimination rate constant were less affected. In contrast to Hg(II), all the MeHg biokinetic parameters remained relatively constant whether Se was administrated simultaneously with the fish diet or when the fish were pre-exposed to Se with elevated body concentrations. Basic biokinetic measurements thus revealed that Se had direct interaction with Hg(II) during dietary assimilation rather than with MeHg and that different Se species had variable effects on Hg assimilation. © 2011 American Chemical Society.