Angular Deep Supervised Vector Quantization for Image Retrieval

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

View graph of relations

Related Research Unit(s)


Original languageEnglish
Pages (from-to)1638-1649
Journal / PublicationIEEE Transactions on Neural Networks and Learning Systems
Issue number4
Online published23 Dec 2020
Publication statusPublished - Apr 2022


Most of the deep quantization methods adopt unsupervised approaches, and the quantization process usually occurs in the Euclidean space on top of the deep feature and its approximate value. When this approach is applied to the retrieval tasks, since the internal product space of the retrieval process is different from the Euclidean space of quantization, minimizing the quantization error (QE) does not necessarily lead to a good performance on the maximum inner product search (MIPS). To solve these problems, we treat Softmax classification as vector quantization (VQ) with angular decision boundaries and propose angular deep supervised VQ (ADSVQ) for image retrieval. Our approach can simultaneously learn the discriminative feature representation and the updatable codebook, both lying on a hypersphere. To reduce the QE between centroids and deep features, two regularization terms are proposed as supervision signals to encourage the intra-class compactness and inter-class balance, respectively. ADSVQ explicitly reformulates the asymmetric distance computation in MIPS to transform the image retrieval process into a two-stage classification process. Moreover, we discuss the extension of multiple-label cases from the perspective of quantization with binary classification. Extensive experiments demonstrate that the proposed ADSVQ has excellent performance on four well-known image data sets when compared with the state-of-the-art hashing methods.

Research Area(s)

  • Deep learning, image retrieval, nearest neighbor search, neural networks, vector quantization (VQ)