Anapole-excited terahertz multifunctional spoof surface plasmon polariton directional Janus metastructures
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Pages (from-to) | 11375-11386 |
Journal / Publication | Physical Chemistry Chemical Physics |
Volume | 25 |
Issue number | 16 |
Online published | 27 Mar 2023 |
Publication status | Published - 28 Apr 2023 |
Link(s)
Abstract
The anapole mode, in which a distinct radiationless electromagnetic (EM) response in artificial media can be achieved, has attracted significant attention and been regarded as a promising candidate to initiate novel avenues to control the intrinsic radiative losses in nanophotonics and plasmonics, whose current research studies mainly focus on the manipulation of the one-directional incident wave. To exploit the propagation characteristic of incident waves in anapole-excited (AE) media, a set of terahertz (THz) multifunctional Janus metastructures (JMSs) for the opposite linear-polarized (LP) light excitation is presented in this paper. By introducing the directional-selective spoof surface plasmon polariton (SSPP) excited by anapole mode, a metastructure rasorber (MSR) possessing an absorption band of 2-3.08 THz (42.5%) and a co-polarized transmission window of 3.77-5.55 THz (38.2%) for the forward normal-incident LP wave is attained. Furthermore, the integration of the MSR and a polarization-conversation structure (PCS) can be used to fabricate a multifunctional Janus metadevice thus achieving the integration of EM energy harvesting, the co-polarized transmission, and cross-polarized reflection of light with opposite propagation directions, i.e., an absorption band of 2.14-3.09 THz (36.3%) for the forward normal-incident LP wave, and a cross-polarized reflection band of 2.08-3.03 THz (37.2%) for the backward vertical-incident LP wave, while attaining an identical co-polarized transmission window of 3.95-5.2 THz (27.3%). Moreover, by utilizing the substantial field-localization properties of anapole modes supported by the nested opposite-directional SSPP with different sizes, the Janus metastructure absorber (JMA) can achieve non-overlapped absorption bands of 2.02-2.84 THz (33.7%) and 2.88-4.58 THz (45.6%) for the bidirectional normal-incident LP waves, respectively. A series of passive JMSs based on the anapole modes excited by the opposite-directional incident waves significantly extend the theoretical framework and application field of multipole electrodynamics, especially aimed at directional-selective management. © 2023 The Royal Society of Chemistry.
Citation Format(s)
Anapole-excited terahertz multifunctional spoof surface plasmon polariton directional Janus metastructures. / Pan, Hao; Li, Bing-xiang; Zhang, Hai Feng.
In: Physical Chemistry Chemical Physics, Vol. 25, No. 16, 28.04.2023, p. 11375-11386.
In: Physical Chemistry Chemical Physics, Vol. 25, No. 16, 28.04.2023, p. 11375-11386.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review