TY - JOUR
T1 - Analytical design method of multiway dual-band planar power dividers with arbitrary power division
AU - Wu, Yongle
AU - Liu, Yuanan
AU - Xue, Quan
AU - Li, Shulan
AU - Yu, Cuiping
PY - 2010/12
Y1 - 2010/12
N2 - In this paper, a novel closed-form design method of generalized Wilkinson power dividers is proposed. By using this method, the power divider could be designed to be arbitrary-way (N-way) with arbitrary power division, and arbitrary dual-band operations in a pure planar structure. A previous dual-band unequal Wilkinson power divider is extended to arbitrary terminal impedances case, thus, it can be used to construct multiway planar power dividers through the combination of the two-section dual-frequency transformers. To obtain three-way (or any odd-way) power dividers with dual-band and unequal power division features, a new developed recombinant structure is employed. This recombinant structure consists of a two-way dual-band unequal power divider/combiner without any isolation structures. Furthermore, the complete design procedures and analytical equations of these proposed generalized power dividers are presented. To verify our proposed design approach in theory, several three-way and four-way power dividers with different dual-band applications and various power divisions are designed and simulated. Finally, a practical three-way power divider operating at both 0.6 and 2.45 GHz with a power dividing ratio of 3:5:1 is fabricated in microstrip technology as a typical example. The measured results of the fabricated power divider verify our proposed idea. © 2010 IEEE.
AB - In this paper, a novel closed-form design method of generalized Wilkinson power dividers is proposed. By using this method, the power divider could be designed to be arbitrary-way (N-way) with arbitrary power division, and arbitrary dual-band operations in a pure planar structure. A previous dual-band unequal Wilkinson power divider is extended to arbitrary terminal impedances case, thus, it can be used to construct multiway planar power dividers through the combination of the two-section dual-frequency transformers. To obtain three-way (or any odd-way) power dividers with dual-band and unequal power division features, a new developed recombinant structure is employed. This recombinant structure consists of a two-way dual-band unequal power divider/combiner without any isolation structures. Furthermore, the complete design procedures and analytical equations of these proposed generalized power dividers are presented. To verify our proposed design approach in theory, several three-way and four-way power dividers with different dual-band applications and various power divisions are designed and simulated. Finally, a practical three-way power divider operating at both 0.6 and 2.45 GHz with a power dividing ratio of 3:5:1 is fabricated in microstrip technology as a typical example. The measured results of the fabricated power divider verify our proposed idea. © 2010 IEEE.
KW - Arbitrary power division
KW - dual-band
KW - dual-frequency
KW - multiway
KW - planar
KW - unequal
KW - Wilkinson power divider
UR - http://www.scopus.com/inward/record.url?scp=78650297480&partnerID=8YFLogxK
UR - https://www.scopus.com/record/pubmetrics.uri?eid=2-s2.0-78650297480&origin=recordpage
U2 - 10.1109/TMTT.2010.2086712
DO - 10.1109/TMTT.2010.2086712
M3 - RGC 21 - Publication in refereed journal
SN - 0018-9480
VL - 58
SP - 3832
EP - 3841
JO - IEEE Transactions on Microwave Theory and Techniques
JF - IEEE Transactions on Microwave Theory and Techniques
IS - 12 PART 1
M1 - 5620940
ER -