Anaerobic oxidation of propane coupled to nitrate reduction by a lineage within the class Symbiobacteriia

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

10 Scopus Citations
View graph of relations

Author(s)

  • Mengxiong Wu
  • Jie Li
  • Andy O. Leu
  • Dirk V. Erler
  • Terra Stark
  • Gene W. Tyson
  • Simon J. McIlroy
  • Jianhua Guo

Detail(s)

Original languageEnglish
Article number6115
Journal / PublicationNature Communications
Volume13
Issue number1
Online published17 Oct 2022
Publication statusPublished - 2022
Externally publishedYes

Link(s)

Abstract

Anaerobic microorganisms are thought to play a critical role in regulating the flux of short-chain gaseous alkanes (SCGAs; including ethane, propane and butane) from terrestrial and aquatic ecosystems to the atmosphere. Sulfate has been confirmed to act as electron acceptor supporting microbial anaerobic oxidation of SCGAs, yet several other energetically more favourable acceptors co-exist with these gases in anaerobic environments. Here, we show that a bioreactor seeded with biomass from a wastewater treatment facility can perform anaerobic propane oxidation coupled to nitrate reduction to dinitrogen gas and ammonium. The bioreactor was operated for more than 1000 days, and we used 13C- and 15N-labelling experiments, metagenomic, metatranscriptomic, metaproteomic and metabolite analyses to characterize the microbial community and the metabolic processes. The data collectively suggest that a species representing a novel order within the bacterial class Symbiobacteriia is responsible for the observed nitrate-dependent propane oxidation. The closed genome of this organism, which we designate as ‘Candidatus Alkanivorans nitratireducens’, encodes pathways for oxidation of propane to CO2 via fumarate addition, and for nitrate reduction, with all the key genes expressed during nitrate-dependent propane oxidation. Our results suggest that nitrate is a relevant electron sink for SCGA oxidation in anaerobic environments, constituting a new microbially-mediated link between the carbon and nitrogen cycles. © 2022, The Author(s).

Research Area(s)

Citation Format(s)

Anaerobic oxidation of propane coupled to nitrate reduction by a lineage within the class Symbiobacteriia. / Wu, Mengxiong; Li, Jie; Leu, Andy O. et al.
In: Nature Communications, Vol. 13, No. 1, 6115, 2022.

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

Download Statistics

No data available