Abstract
This review examines the methods used to optimize the process parameters of laser cladding, including traditional optimization algorithms such as single-factor, regression analysis, response surface, and Taguchi, as well as intelligent system optimization algorithms such as neural network models, genetic algorithms, support vector machines, the new non-dominance ranking genetic algorithm II, and particle swarm algorithms. The advantages and disadvantages of various laser cladding process optimization methods are analyzed and summarized. Finally, the development trend of optimization methods in the field of laser cladding is summarized and predicted. It is believed that the result would serve as a foundation for future studies on the preparation of high-quality laser cladding coatings. © 2023 by the authors.
| Original language | English |
|---|---|
| Article number | 496 |
| Journal | Coatings |
| Volume | 13 |
| Issue number | 3 |
| Online published | 23 Feb 2023 |
| DOIs | |
| Publication status | Published - Mar 2023 |
Research Keywords
- laser cladding
- process parameter
- optimization methods
- review
- EMPIRICAL-STATISTICAL MODEL
- ARTIFICIAL NEURAL-NETWORK
- CO-BASED COATINGS
- COAXIAL LASER
- POWDER DEPOSITION
- MULTIRESPONSE OPTIMIZATION
- COMPOSITE COATINGS
- WEAR-RESISTANCE
- GEOMETRICAL CHARACTERISTICS
- PROCESSING PARAMETERS
Publisher's Copyright Statement
- This full text is made available under CC-BY 4.0. https://creativecommons.org/licenses/by/4.0/