An effective quad-dominant meshing method for unorganized point clouds

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

5 Scopus Citations
View graph of relations

Author(s)

Related Research Unit(s)

Detail(s)

Original languageEnglish
Pages (from-to)86-102
Journal / PublicationGraphical Models
Volume76
Issue number2
Publication statusPublished - Mar 2014

Abstract

To perform quad meshing on raw point clouds, existing algorithms usually require a time-consuming parameterization or Voronoi space partition process. In this paper, we propose an effective method to generate quad-dominant meshes directly from unorganized point clouds. In the proposed method, we first apply Marinov's curvature tensor optimization to the input point cloud to reduce the umbilical regions in order to obtain a smooth curvature tensor. We then propose an efficient marching scheme to extract the curvature lines with controllable density from the point cloud. Finally, we apply a specialized K-Dimension (KD) tree structure, which converts the nearest neighbor searching problem into a sorting problem, to efficiently estimate the intersections of curvature lines and recover the topology of the quad-dominant meshes. We have tested the proposed method on different point clouds. Our results show that the proposed method produces good quality meshes with high computational efficiency and low memory requirement. © 2013 Elsevier B.V. All rights reserved.

Research Area(s)

  • Curvature lines, Curvature tensor, Point clouds, Quad-dominant meshes