An atlas of bacterial two-component systems reveals function and plasticity in signal transduction

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

3 Scopus Citations
View graph of relations


Original languageEnglish
Article number111502
Journal / PublicationCell Reports
Issue number3
Online published18 Oct 2022
Publication statusPublished - 18 Oct 2022



Two-component systems (TCSs) consist of the biggest group of signal transduction pathways in biology. Although TCSs play key roles in sensing signals to sustain survival and virulence, the genome-wide regulatory variability and conservation and synergistic actions of global TCSs in response to external stimulus are still uncharacterized. Here, we integrate 120 transcriptome sequencing datasets and 38 chromatin immunoprecipitation sequencing datasets of the model phytopathogen Pseudomonas syringae to illustrate how bacterial TCSs dynamically govern their regulatory roles under changing environments. We reveal themes of conservation and variability in bacterial gene regulations in response to changing environments by developing a network-based PSTCSome (Pseudomonas syringae TCS regulome) containing 232 and 297 functional genes under King's B medium and minimal medium conditions, respectively. We identify 7 TCSs regulating the type III secretion system, motility, or exopolysaccharide production. Overall, this study represents an important source to study the plasticity of TCSs among other TCS-containing organisms.

Research Area(s)

  • bacteria, CP: Microbiology, network, two-component systems

Download Statistics

No data available