An amino acid-based supramolecular nanozyme by coordination self-assembly for cascade catalysis and enhanced chemodynamic therapy towards biomedical applications

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

5 Scopus Citations
View graph of relations


  • Enhui Song
  • Yongxin Li
  • Lili Chen
  • Xiaopeng Lan
  • Chunlei Liu
  • Chunzhao Liu

Related Research Unit(s)


Original languageEnglish
Journal / PublicationNanoscale Advances
Online published16 Sep 2021
Publication statusOnline published - 16 Sep 2021



The clinical translation of chemodynamic therapy has been highly obstructed by the insufficient intracellular H2O2 level in diseased tissues. Herein, we developed a supramolecular nanozyme through a facile one-step cooperative coordination self-assembly of an amphipathic amino acid and glucose oxidase (GOx) in the presence of Fe2+. The results demonstrated that the supramolecular nanozyme possessed cascade enzymatic activity (i.e., GOx and peroxidase), which could amplify the killing efficacy of hydroxyl radicals (OH) via self-supplying H2O2, finally achieving synergistic starvation-chemodynamic cancer therapy in vitro. Additionally, this cascade nanozyme also exhibited highly effective antibacterial activity on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) without the need for additional H2O2. This work provided a promising strategy for the design and development of nanozymes for future biomedical applications.

Research Area(s)

Citation Format(s)

Download Statistics

No data available