An algorithm for the interpolation of hybrid curves

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

6 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Pages (from-to)267-277
Journal / PublicationCAD Computer Aided Design
Volume35
Issue number3
Publication statusPublished - Mar 2003

Abstract

Real time tool path generation consists of off-line design and real time interpolation of tool paths. An hybrid curve is the intersection of a parametric surface and an implicit surface. Previous work in tool path interpolation focused mainly in the interpolation of parametric curves. Tool paths designed by drive surface methods are hybrid curves which, in general, cannot be represented as parametric curves. An algorithm for the interpolation of hybrid curves is proposed in this paper. The algorithm is based on interpolation of the projection of the hybrid curve into the parametric domain. Each increment involves a second-order interpolation step augmented by iterative error reduction. Simulations of hybrid curve interpolation have been carried out. They are based on practical surfaces represented as NURB surfaces and implicit surfaces including a plane, a cylinder and a high order algebraic surface. They demonstrate that under typical machining conditions, interpolation error is well within the accuracy requirements of typical machining and that the use of one iteration error reduction can significantly reduce the path deviation. These show that the proposed algorithm is potentially useful for tool path interpolation for the machining of parametric surfaces. © 2002 Elsevier Science Ltd. All rights reserved.

Research Area(s)

  • Computer numerical control, Hybrid curves, Interpolation, Tool paths

Citation Format(s)