Alterations to Juvenile Zebrafish (Danio rerio) Swim Performance after Acute Embryonic Exposure to Sub-lethal Exposures of Hydraulic Fracturing Flowback and Produced Water

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalNot applicablepeer-review

10 Scopus Citations
View graph of relations

Author(s)

  • Erik J. Folkerts
  • Tamzin A. Blewett
  • Yuhe He
  • Greg G. Goss

Detail(s)

Original languageEnglish
Pages (from-to)50-59
Journal / PublicationAquatic Toxicology
Volume193
Early online date7 Oct 2017
Publication statusPublished - Dec 2017
Externally publishedYes

Abstract

Hydraulic fracturing flowback and produced water (FPW) is a wastewater produced during fracturing activities in an operating well which is hyper saline and chemically heterogeneous in nature, containing both anthropogenic and petrogenic chemicals. Determination of FPW associated toxicity to embryonic fish is limited, while investigation into how embryonic exposures may affect later life stages is not yet studied. Zebrafish embryos (24 hrs post fertilization) were acutely exposed to 2.5% and 5% FPW fractions for either 24 or 48 hrs and returned to freshwater. After either 24 or 48 h exposures, embryos were examined for expression of 3 hypoxia related genes. Erythropoietin (epoa) but not hypoxia inducible factor (hif1aa) nor hemoglobin −ß chain (hbbe1.1) was up-regulated after either 24 or 48 h FPW exposure. Surviving embryos were placed in freshwater and grown to a juvenile stage (60 days post fertilization). Previously exposed zebrafish were analyzed for both swim performance (Ucrit and Umax) and aerobic capacity. Fish exposed to both sediment containing (FPW-S) or sediment free (FPW-SF) FPW displayed significantly reduced aerobic scope and Ucrit/Umax values compared to control conditions. Our results collectively suggest that organics present in our FPW sample may be responsible for sub-lethal fitness and metabolic responses. We provide evidence supporting the theory that the cardio-respiratory system is impacted by FPW exposure. This is the first known research associating embryonic FPW exposures to sub-lethal performance related responses in later life fish stages.

Research Area(s)

  • Aerobic scope, Hydraulic fracturing, Swim performance, Toxicity, Zebrafish

Citation Format(s)

Alterations to Juvenile Zebrafish (Danio rerio) Swim Performance after Acute Embryonic Exposure to Sub-lethal Exposures of Hydraulic Fracturing Flowback and Produced Water. / Folkerts, Erik J.; Blewett, Tamzin A.; He, Yuhe; Goss, Greg G.

In: Aquatic Toxicology, Vol. 193, 12.2017, p. 50-59.

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalNot applicablepeer-review