Age Efficient Optimization in UAV-Aided VEC Network : A Game Theory Viewpoint
Research output: Journal Publications and Reviews (RGC: 21, 22, 62) › 21_Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Pages (from-to) | 25287-25296 |
Journal / Publication | IEEE Transactions on Intelligent Transportation Systems |
Volume | 23 |
Issue number | 12 |
Online published | 21 Jun 2022 |
Publication status | Published - Dec 2022 |
Link(s)
Abstract
The timeless and efficient vehicle data transmission are the two common requirements for the Internet of Vehicles (IoV), especially the Unnamed Aircraft Vehicle (UAV)-aided Vehicular Edge Computing (VEC) network. Moreover, since the Age of Information (AoI) performance greatly influences these two indicators, data quality should be guaranteed in vehicle communication. However, few researchers pay attention to the AoI performance optimization issue regarding wireless resource constraint, transmission interference, and vehicle cooperation in recent years. To close this research gap, we propose an AoI-oriented channel access strategy in the UAV-aided VEC network from the game theory viewpoint. Firstly, the UAV-aided VEC network model and edge computing-based AoI expression are established and derived in the closed form, respectively. Subsequently, we transform the AoI minimization problem into an AoI-based channel access issue from the game theory viewpoint. Moreover, the stochastic learning-based algorithm is proposed to find the Nash Equilibrium (NE) solution of the formulated problem. Finally, simulation results evaluate the correctness and effectiveness of the proposed algorithms, where our scheme can achieve the better AoI value compared with baselines.
Research Area(s)
- Age of information (AoI), Autonomous aerial vehicles, Data integrity, Edge computing, game theory, Interference, Optimization, Resource management, vehicular edge computing (VEC)
Citation Format(s)
Age Efficient Optimization in UAV-Aided VEC Network : A Game Theory Viewpoint. / Han, Zhaoyang; Yang, Yaoqi; Wang, Weizheng et al.
In: IEEE Transactions on Intelligent Transportation Systems, Vol. 23, No. 12, 12.2022, p. 25287-25296.Research output: Journal Publications and Reviews (RGC: 21, 22, 62) › 21_Publication in refereed journal › peer-review