Abstract
Online learning to rank (OLTR) is a sequential decision-making problem where a learning agent selects an ordered list of items and receives feedback through user clicks. Although potential attacks against OLTR algorithms may cause serious losses in real-world applications, there is limited knowledge about adversarial attacks on OLTR. This paper studies attack strategies against multiple variants of OLTR. Our first result provides an attack strategy against the UCB algorithm on classical stochastic bandits with binary feedback, which solves the key issues caused by bounded and discrete feedback that previous works cannot handle. Building on this result, we design attack algorithms against UCB-based OLTR algorithms in position-based and cascade models. Finally, we propose a general attack strategy against any algorithm under the general click model. Each attack algorithm manipulates the learning agent into choosing the target attack item T − o(T) times, incurring a cumulative cost of o(T). Experiments on synthetic and real data further validate the effectiveness of our proposed attack algorithms.
Original language | English |
---|---|
Title of host publication | 37th Conference on Neural Information Processing Systems (NeurIPS 2023) |
Editors | A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, S. Levine |
Pages | 41675-41692 |
ISBN (Electronic) | 9781713899921 |
Publication status | Published - Dec 2023 |
Externally published | Yes |
Event | 37th Conference on Neural Information Processing Systems (NeurIPS 2023) - New Orleans Ernest N. Morial Convention Center, New Orleans, United States Duration: 10 Dec 2023 → 16 Dec 2023 https://papers.nips.cc/paper_files/paper/2023 https://nips.cc/Conferences/2023 |
Publication series
Name | Advances in Neural Information Processing Systems |
---|---|
Volume | 36 |
ISSN (Print) | 1049-5258 |
Conference
Conference | 37th Conference on Neural Information Processing Systems (NeurIPS 2023) |
---|---|
Abbreviated title | NIPS '23 |
Country/Territory | United States |
City | New Orleans |
Period | 10/12/23 → 16/12/23 |
Internet address |