Advances in fractal germanium micro/nanoclusters induced by gold : Microstructures and properties

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journal

1 Scopus Citations
View graph of relations

Detail(s)

Original languageEnglish
Pages (from-to)1318-1337
Journal / PublicationJournal of Nanoscience and Nanotechnology
Volume14
Issue number2
Publication statusPublished - Feb 2014

Abstract

Germanium materials are a class of unique semiconductor materials with widespread technological applications because of their valuable semiconducting, electrical, optical, and thermoelectric power properties in the fields of macro/mesoscopic materials and micro/nanodevices. In this review, we describe the efforts toward understanding the microstructures and various properties of the fractal germanium micro/nanoclusters induced by gold prepared by high vacuum thermal evaporation techniques, highlighting contributions from our laboratory. First, we present the integer and non-integer dimensional germanium micro/nanoclusters such as nanoparticles, nanorings, and nanofractals induced by gold and annealing. In particular, the nonlinear electrical behavior of a gold/germanium bilayer film with the interesting nanofractal is discussed in detail. In addition, the third-order optical nonlinearities of the fractal germanium nanocrystals embedded in gold matrix will be summarized by using the sensitive and reliable Z-scan techniques aimed to determine the nonlinear absorption coefficient and nonlinear refractive index. Finally, we emphasize the thermoelectric power properties of the gold/germanium bilayer films. The thermoelectric power measurement is considered to be a more effective method than the conductivity for investigating superlocalization in a percolating system. This research may provide a novel insight to modulate their competent performance and promote rational design of micro/nanodevices. Once mastered, germanium thin films with a variety of fascinating micro/nanoclusters will offer vast and unforeseen opportunities in the semiconductor industry as well as in other fields of science and technology. © 2014 American Scientific Publishers All rights reserved.

Research Area(s)

  • Annealing, Electrical, Fractals, Germanium, Gold Induced, Microstructures, Optical, Thermoelectric Power, Thin Films