Abstract
Against the metal artifact reduction (MAR) task in computed tomography (CT) imaging, most of the existing deep-learning-based approaches generally select a single Hounsfield unit (HU) window followed by a normalization operation to preprocess CT images. However, in practical clinical scenarios, different body tissues and organs are often inspected under varying window settings for good contrast. The methods trained on a fixed single window would lead to insufficient removal of metal artifacts when being transferred to deal with other windows. To alleviate this problem, few works have proposed to reconstruct the CT images under multiple-window configurations. Albeit achieving good reconstruction performance for different windows, they adopt to directly supervise each window learning in an equal weighting way based on the training set. To improve the learning flexibility and model generalizability, in this paper, we propose an adaptive weighting algorithm, called AdaW, for the multiple-window metal artifact reduction, which can be applied to different deep MAR network backbones. Specifically, we first formulate the multiple window learning task as a bi-level optimization problem. Then we derive an adaptive weighting optimization algorithm where the learning process for MAR under each window is automatically weighted via a learning-to-learn paradigm based on the training set and validation set. This rationality is finely substantiated through theoretical analysis. Based on different network backbones, experimental comparisons executed on five datasets with different body sites comprehensively validate the effectiveness of AdaW in helping improve the generalization performance as well as its good applicability. © 2025 IEEE.
Original language | English |
---|---|
Journal | IEEE Transactions on Medical Imaging |
DOIs | |
Publication status | Online published - 13 Feb 2025 |
Bibliographical note
Full text of this publication does not contain sufficient affiliation information. With consent from the author(s) concerned, the Research Unit(s) information for this record is based on the existing academic department affiliation of the author(s).Research Keywords
- Bi-level optimization
- Learning-to-learn
- Metal artifact reduction
- Model generalization