Achieving Exceptional Volumetric Desalination Capacity Using Compact MoS2 Nanolaminates

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

3 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Article number2403385
Journal / PublicationAdvanced Materials
Volume36
Issue number31
Online published20 May 2024
Publication statusPublished - 1 Aug 2024

Abstract

Capacitive deionization (CDI) has emerged as a promising technology for freshwater recovery from low-salinity brackish water. It is still inapplicable in specific scenarios (e.g., households, islands, or offshore platforms) due to too low volumetric adsorption capacities. In this study, a high-density semi-metallic molybdenum disulfide (1Tʹ-MoS2) electrode with compact architecture obtained by restacking of exfoliated nanosheets, which achieve high capacitance up to ≈277.5 F cm−3 under an ultrahigh scan rate of 1000 mV s−1 with a lower charge-transfer resistance and nearly tenfold higher electrochemical active surface area than the 2H-MoS2 electrode, is reported. Furthermore, 1Tʹ-MoS2 electrode demonstrates exceptional volumetric desalination capacity of 65.1 mgNaCl cm−3 in CDI experiments. Ex situ X-ray diffraction (XRD) reveal that the cation storage mechanism with the dynamic expansion of 1Tʹ-MoS2 interlayer to accommodate cations such as Na+, K+, Ca2+, and Mg2+, which in turn enhances the capacity. Theoretical analysis unveils that 1Tʹ phase is thermodynamically preferable over 2H phase, the ion hydration and channel confinement also play critical role in enhancing ion adsorption. Overall, this work provides a new method to design compact 2D-layered nanolaminates with high-volumetric performance for CDI desalination. © 2024 Wiley-VCH GmbH.

Research Area(s)

  • 2D materials, capacitive deioniazation, electrochemical intercalation and exfoliation, exceptional volumetric capacity, nanolaminate membranes

Citation Format(s)