Accessible precisions for estimating two conjugate parameters using Gaussian probes

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

8 Scopus Citations
View graph of relations

Author(s)

  • Syed M. Assad
  • Jiamin Li
  • Yuhong Liu
  • Ningbo Zhao
  • Wen Zhao
  • Ping Koy Lam
  • Xiaoying Li

Detail(s)

Original languageEnglish
Article number023182
Journal / PublicationPhysical Review Research
Volume2
Issue number2
Online published18 May 2020
Publication statusPublished - May 2020
Externally publishedYes

Link(s)

Abstract

We analyze the precision limits for a simultaneous estimation of a pair of conjugate parameters in a displacement channel using Gaussian probes. Having a set of squeezed states as an initial resource, we compute the Holevo Cramér-Rao bound to investigate the best achievable estimation precisions if only passive linear operations are allowed to be performed on the resource prior to probing the channel. The analysis reveals the optimal measurement scheme and allows us to quantify the best precision for one parameter when the precision of the second conjugate parameter is fixed. To estimate the conjugate parameter pair with equal precision, our analysis shows that the optimal probe is obtained by combining two squeezed states with orthogonal squeezing quadratures on a 50:50 beam splitter. If different importance is attached to each parameter, then the optimal mixing ratio is no longer 50:50. Instead, it follows a simple function of the available squeezing and the relative importance between the two parameters.

Research Area(s)

Citation Format(s)

Accessible precisions for estimating two conjugate parameters using Gaussian probes. / Assad, Syed M.; Li, Jiamin; Liu, Yuhong; Zhao, Ningbo; Zhao, Wen; Lam, Ping Koy; Ou, Z. Y.; Li, Xiaoying.

In: Physical Review Research, Vol. 2, No. 2, 023182, 05.2020.

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

Download Statistics

No data available