A wavelet-based piecewise approach for steady-state analysis of power electronics circuits

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

10 Scopus Citations
View graph of relations



Original languageEnglish
Pages (from-to)559-582
Journal / PublicationInternational Journal of Circuit Theory and Applications
Issue number5
Online published29 Aug 2006
Publication statusPublished - Sept 2006
Externally publishedYes


Simulation of steady-state waveforms is important to the design of power electronics circuits, as it reveals the maximum voltage and current stresses being imposed upon specific devices and components. This paper proposes an improved approach to finding steady-state waveforms of power electronics circuits based on wavelet approximation. The proposed method exploits the time-domain piecewise property of power electronics circuits in order to improve the accuracy and computational efficiency. Instead of applying one wavelet approximation to the whole period, several wavelet approximations are applied in a piecewise manner to fit the entire waveform. This wavelet-based piecewise approximation approach can provide very accurate and efficient solution, with much less number of wavelet terms, for approximating steady-state waveforms of power electronics circuits. Copyright © 2006 John Wiley & Sons, Ltd.

Research Area(s)

  • power electronics, switching circuits, wavelet approximation, steady-state waveform