A two-chip acoustofluidic particle manipulation platform with a detachable and reusable surface acoustic wave device

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

12 Scopus Citations
View graph of relations


Original languageEnglish
Pages (from-to)7752-7758
Number of pages7
Journal / PublicationThe Analyst
Issue number23
Online published1 Sept 2020
Publication statusPublished - 7 Dec 2020


This work describes a two-chip acoustofluidic platform for two-dimensional (2D) manipulation of microparticles in a closed microchamber on a reusable surface acoustic wave (SAW) device. This platform comprises two microfabricated chips: (1) a detachable silicon superstrate enclosed by a PDMS microfluidic chamber and (2) a reusable SAW device for generating standing SAW (SSAW), which is typically an expensive component. Critical to such a two-chip acoustofluidic platform is the selection of a suitable coupling agent at the interface of the SAW device and superstrate. To this end, we applied a polymer thin film as a coupling agent that balances between acoustic coupling efficiency, stability over time, and reusability. Recycling of the SAW device lowers the cost-barrier for acoustofluidic particle manipulation. The SSAW is transmitted into the silicon superstrate via the coupling agent to form a standing Lamb wave (SLW) to trap and move microparticles. The reported two-chip strategy enables the single-use microfluidic superstrates to avoid chemical and biological contaminations, while maintaining the merits of acoustofluidic manipulation of being noncontact and label-free and applicable to a wide range of microparticles with different shapes, density, polarity, and electrical properties.