A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

119 Scopus Citations
View graph of relations


Original languageEnglish
Pages (from-to)1077-1086
Journal / PublicationScience Bulletin
Issue number16
Online published5 Jul 2018
Publication statusPublished - 30 Aug 2018


Thermal runaway has been a long-standing safety issue impeding the development of high-energy-density batteries. Physical safety designs such as employing circuit-breakers and fuses to batteries are limited by small operating voltage windows and no resumption of original working condition when it is cooled down. Here we report a smart thermoresponsive polymer electrolyte that can be incorporated inside batteries to prevent thermal runaway via a fast and reversible sol-gel transition, and successfully combine this smart electrolyte with a rechargeable Zn/α-MnO2 battery system. At high temperature, battery operation is inhibited as a result of the increased internal resistance caused by the gelation of liquid electrolyte. After cooling down, the electrolyte is spontaneously reversed to sol state and the electrochemical performance of the battery is restored. More importantly, sol-gel transition enables the smart battery to experience different charge-discharge rates under various temperature levels, providing a smart and active strategy to achieve dynamic and reversible self-protection.

Research Area(s)

  • Gelation, Rechargeable zinc ion battery, Reversible transition, Sol-gel electrolyte, Thermoresponsive