A slow atomic diffusion process in high-entropy glass-forming metallic melts

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journal

4 Scopus Citations
View graph of relations

Author(s)

Related Research Unit(s)

Detail(s)

Original languageEnglish
Article number145301
Journal / PublicationJournal of Physics D: Applied Physics
Volume51
Issue number14
Online published12 Mar 2018
Publication statusPublished - 11 Apr 2018

Abstract

Quasi-elastic neutron scattering has been used to study atomic relaxation processes in high-entropy glass-forming metallic melts with different glass-forming ability (GFA). The momentum transfer dependence of mean relaxation time shows a highly collective atomic transport process in the alloy melts with the highest and lowest GFA. However, a jump diffusion process is the long-range atomic transport process in the intermediate GFA alloy melt. Nevertheless, atomic mobility close to the melting temperature of these alloy melts is quite similar, and the temperature dependence of the diffusion coefficient exhibits a non-Arrhenius behavior. The atomic mobility in these high-entropy melts is much slower than that of the best glass-forming melts at their respective melting temperatures.

Research Area(s)

  • atomic relaxation, high-entropy alloy, neutron scattering