A simple vector-like law for perceptual information combination is also followed by a class of cortical multisensory bimodal neurons

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

2 Scopus Citations
View graph of relations

Author(s)

Related Research Unit(s)

Detail(s)

Original languageEnglish
Article number102527
Journal / PublicationiScience
Volume24
Issue number6
Online published13 May 2021
Publication statusPublished - 25 Jun 2021

Link(s)

Abstract

An interdisciplinary approach to sensory information combination shows a correspondence between perceptual and neural measures of nonlinear multisensory integration. In psychophysics, sensory information combinations are often characterized by the Minkowski formula, but the neural substrates of many psychophysical multisensory interactions are unknown. We show that audiovisual interactions – for both psychophysical detection threshold data and cortical bimodal neurons – obey similar vector-like Minkowski models, suggesting that cortical bimodal neurons could underlie multisensory perceptual sensitivity. An alternative Bayesian model is not a good predictor of cortical bimodal response. In contrast to cortex, audiovisual data from superior colliculus resembles the ‘City-Block’ combination rule used in perceptual similarity metrics. Previous work found a simple power law amplification rule is followed for perceptual appearance measures and by cortical subthreshold multisensory neurons. The two most studied neural cell classes in cortical multisensory interactions may provide neural substrates for two important perceptual modes: appearance-based and performance-based perception.

Research Area(s)

  • Nonlinear physics, Psychoacoustics, Sensory neuroscience

Bibliographic Note

Publisher Copyright: © 2021 The Authors

Citation Format(s)

Download Statistics

No data available